

Sector-coupling emulation for PHIL laboratories

Dr. -Ing. Anurag Mohapatra

Center for Combined Smart Energy Systems (CoSES)

MEP, TU Munich

TU Dortmund 21.01.2025

CoSES Team

Prof.

Thomas Hamacher

Director

Dr. -Ing. **Anurag Mohapatra**

Group Lead

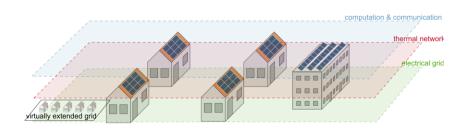
Approx. 10 internal and external doctoral candidates, several guest researchers and student assisstants.

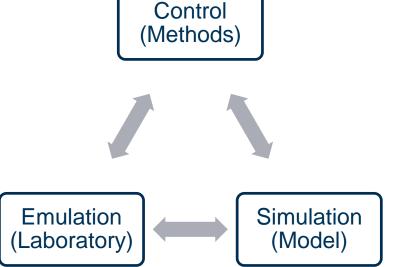
Photo: CoSES Team Retreat, 2024, Berchtesgaaden

CoSES: at a Glance

Sector-coupled microgrid at TUM

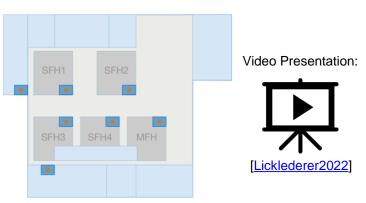
- Reconfigurable 1.5 km power grid
- · Real district heating grid
- Upto 250kVA PHIL emulation
- 4th and 5th generation heat prosumers
- PV, BESS, EV chargers, HP, CHP, Boilers
- Decentralised control systems
- Unified programming interfaces
- API access to the lab





CoSES: Research and Expertise

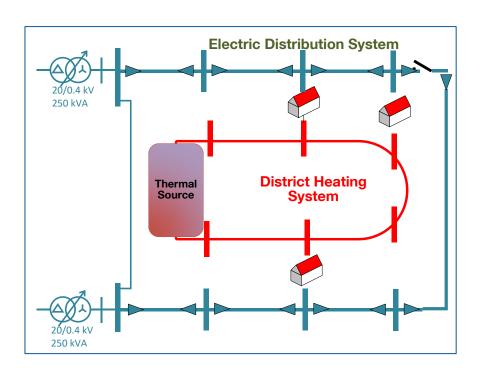
- Active Distribution Grids
- Bidirectional District Heating & Cooling Networks
- Smart Management, Communication & Control

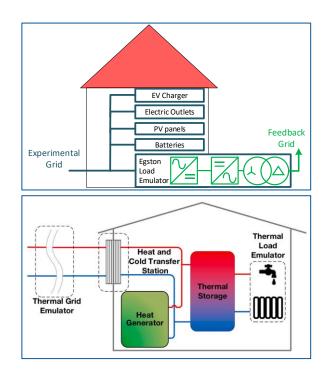


CoSES: Energy technology of five buildings in one lab

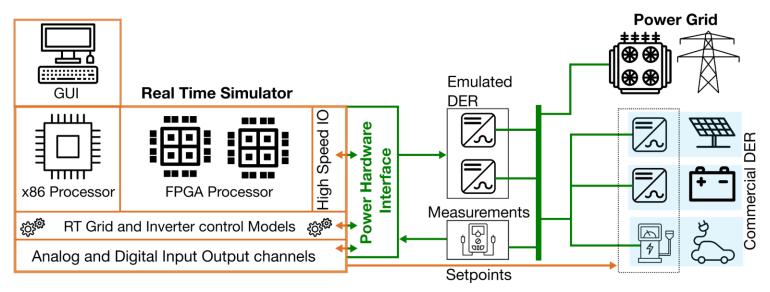
Detailed info in our publications on the lab:

Zinsmeister2023

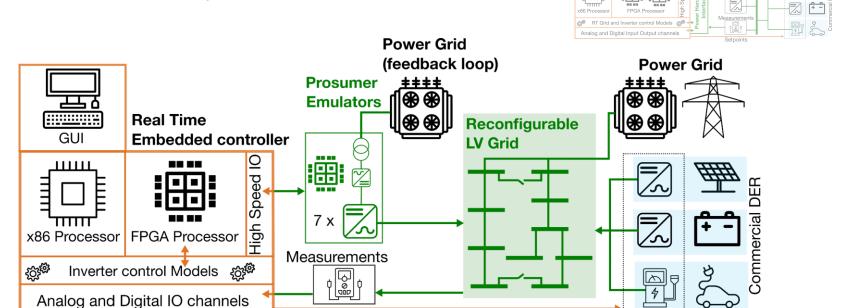



[Mohapatra2022]

CoSES: Schematic overview

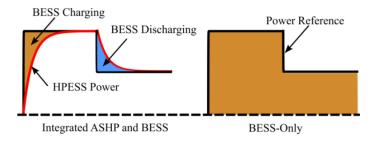


CoSES: Power-system in the loop


Standard power system laboratories

Real Time Simulator

CoSES: Power-system in the loop

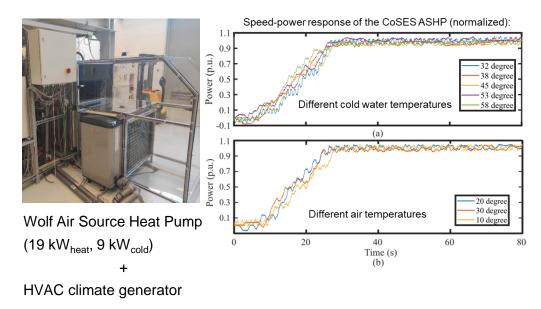

Setpoints

CoSES: Power system in the loop

- Heat pumps can be used for frequency response services
- Heat pumps are a control nightmare in the field

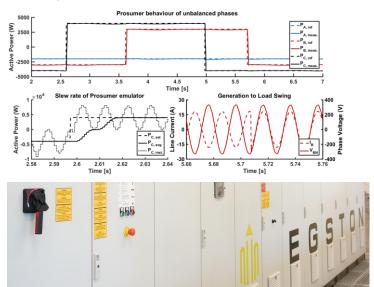
- How exactly should power system laboratories "research" sector-coupling through heat-pumps?
 - Lack of expertise in heat-pump modelling
 - Lack of access to requisite real hardware
 - Unable to bypass any device safety features for fast control

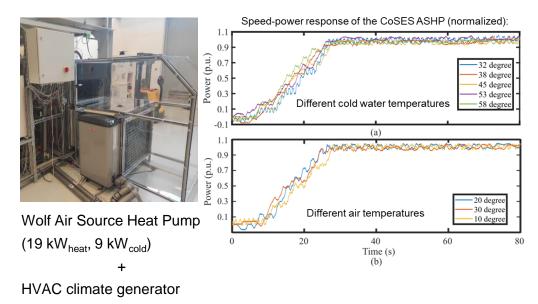
Why heat pumps often consume too much electricity


They are intended to make residential buildings more climate-friendly and less dependent on gas. But many heat pumps are planned incorrectly, and customers are often left with high costs. What consumers should pay attention to.

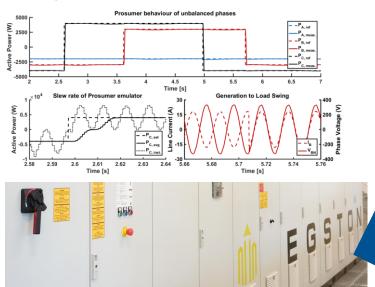
By <u>Henning Jauernig</u>
18.03.2022, 13:00 • from **DER SPIEGEL 12/2022**

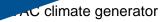
SPIEGEL Business

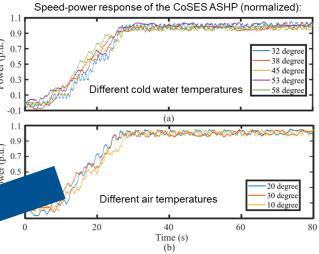


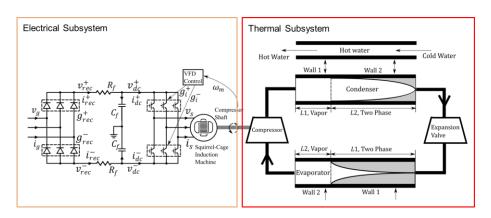


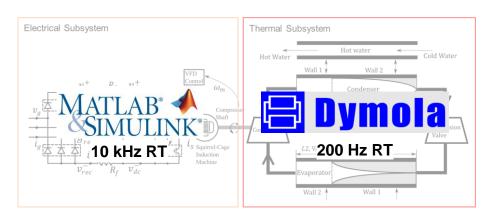
High bandwidth PHIL emulation.

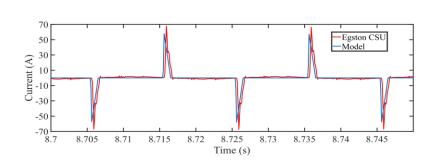


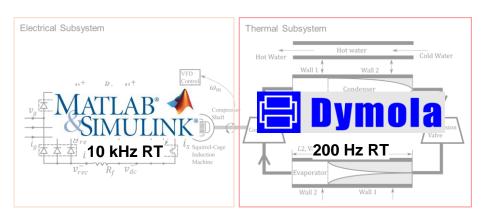



High bandwidth PHIL emulation.

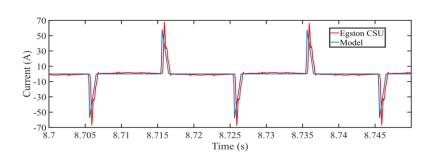


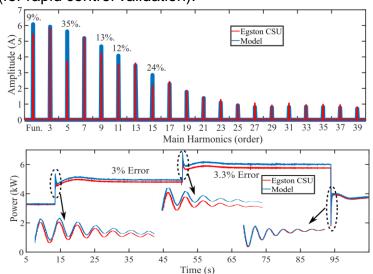

- Remove all the internal safety control gains and delays.
- Reflect important non-linear dynamics based on physics principles (for rapid control validation).
- Establish our "virtual PHIL Heat Pump" in a real grid environment.


- Remove all the internal safety control gains and delays.
- Reflect important non-linear dynamics based on physics principles (for rapid control validation).
- Establish our "virtual PHIL Heat Pump" in a real grid environment.



- Remove all the internal safety control gains and delays.
- Reflect important non-linear dynamics based on physics principles (for rapid control validation).
- Establish our "virtual PHIL Heat Pump" in a real grid environment.

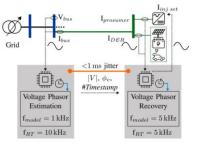




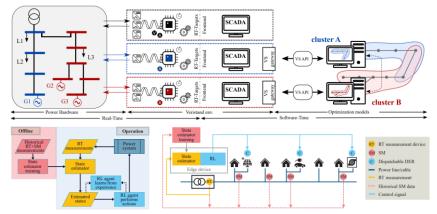
- Remove all the internal safety control gains and delays.
- Reflect important non-linear dynamics based on physics principles (for rapid control validation).
- Establish our "virtual PHIL Heat Pump" in a real grid environment.

Relevant Publications

Designing experiments in an ADG lab


- CoSES research infrastructure [Peric2020, PES GM]
- IoT integration for CoSES [Mayer2021, WF-IoT Conf.]
- PHIL infrastructure in CoSES [Mohapatra2022, ISGT Europe]

PHIL implementation


- Online decentral OPF in PHIL [Cornejo2022, PES GM]
- PHIL emulated M-Class PMU [Mohapatra2023, PowerTech]
- PHIL emulated Heat pumps for frequency response [Song2024, PSCC]

ML applications in Power Systems

- RL for Demand Response Problems [Ludolfinger2023a, PowerTech]
- Adaptive Control of Practical Heat Pump Systems based on RL [Song2023, PowerCon]
- Data-driven modelling of heat pump dynamic model [Song2022, PES GM]
- Transformer Model Based Soft Actor-Critic Learning for HEMS
 [<u>Ludolfinger2023b</u>, PowerCon]
- LV grid control based on data driven SE and RL [Özlemis2024, PES GM]

Appendix – Electrical Equipment

Transformers	sformers 2 x MV/LV OLTC, 250 KVA; 1 x MV/LV 630KVA for feedback loop					
LV Grid 12 x Power cables, 10 Lv Busbars, 2 x LV circuit breaker (to change the network topolog						
Prosumers	Egston Compiso, 7 x bidirectional 4 leg inverters, SFP interface for control, 250KVA (total), 100KVA (single cabinet)					
DERs	18KWp PV divided into 3 inverters, 2 x 13KWh battery storage, 2 x 22KW car chargers.					

Appendix – Thermal Equipment

	Haus 1	Haus 2	Haus 3	Haus 4	Haus 5
Thermal generators	CHP (2 kW _{el} , 5,2 kW _{th}) Boiler (20 kW _{th}) Solar thermal (9 kW _{th})	Boiler (20 kW _{th}) Heat pump (19 kW _{heat} , 9 kW _{cold}) Solar thermal (9 kW _{th})	Ground source heat pump (19 kW _{heat}) Solar thermal (9 kW _{th})	Stirling Engine (1 kW _{el} , 6 kW _{th}) Boiler (20 kW _{th})	CHP (5 kW _{el} , 11,9 kW _{th}) CHP (18 kW _{el} , 34 kW _{th}) Boiler (50 kW _{th})
Thermal storage	800 I	785 I	1000 I	1000 I	2000 I
Domestic hot water	Fresh water storage (500 l)	Fresh water storage	Fresh water storage	Internal heat exchanger	Fresh water storage
Transfer stations	Bidirectional transfer station (30 kW _{th}) Booster heat pump (19 kW _{heat} , 14 kW _{cold})	Bidirectional transfer station (30 kW _{th})	Bidirectional transfer station (30 kW _{th})	Bidirectional transfer station (30 kW _{th})	Bidirectional transfer station (60 kW _{th})
Thermal loads	30 kW _{heat} , 9 kW _{cold}	30 kW _{heat} , 9 kW _{cold}	30 kW _{heat} , 9 kW _{cold}	30 kW _{heat}	60 kW _{heat}