

Sector-coupling emulation for PHIL laboratories

Dr. -Ing. Anurag Mohapatra

Center for Combined Smart Energy Systems (CoSES)

MEP, TU Munich

Real-Time Simulation Workshop 2024, KIT 12.12.2024

CoSES Team

Prof.

Thomas Hamacher

Director

Dr. -Ing. **Anurag Mohapatra**

Group Lead

Approx. 10 internal and external doctoral candidates, several guest researchers and student assisstants.

Photo: CoSES Team Retreat, 2024, Berchtesgaaden

Key Areas of Research and Expertise

Multi-Energy Systems on Microgrid / District Level

- Active Distribution Grids
- Bidirectional District Heating & Cooling Networks
- Smart Management, Communication & Control

CoSES: Energy technology of five buildings in one lab

Detailed info in our publications on the lab:

Zinsmeister2023

[Mohapatra2022]

How to use PHIL in Sector-coupling research?

Create *virtual* sectorcoupling DERs for grid connected tests

dynamic modeling power-hardware-in-the-los

se based on the current assumptions of linear speed-power transient characteristic emperature control applications. Customized setups with experimental validation

Bidirectional Substation Control for Smart Thermal Grids: Experimental Evaluation of a Weighted Proportional-Integral Approach

Evaluate heat substation control for smart thermal grids

- Heat pumps can be used for frequency response services
- Heat pumps are a control nightmare in the field

- Heat pumps can be used for frequency response services
- Heat pumps are a control nightmare in the field

- How exactly should power system laboratories "research" sector-coupling through heat-pumps?
 - Lack of expertise in heat-pump modelling
 - Lack of access to requisite real hardware
 - Unable to bypass any device safety features for fast control

Why heat pumps often consume too much electricity

They are intended to make residential buildings more climate-friendly and less dependent on gas. But many heat pumps are planned incorrectly, and customers are often left with high costs. What consumers should pay attention to.

By <u>Henning Jauernig</u> 18.03.2022, 13:00 • from **DER SPIEGEL 12/2022**

SPIEGEL Business

HVAC climate generator

High bandwidth PHIL emulation.

HVAC climate generator

High bandwidth PHIL emulation.

- Remove all the internal safety control gains and delays.
- Reflect important non-linear dynamics based on physics principles (for rapid control validation).
- Establish our "virtual PHIL Heat Pump" in a real grid environment.

- Remove all the internal safety control gains and delays.
- Reflect important non-linear dynamics based on physics principles (for rapid control validation).
- Establish our "virtual PHIL Heat Pump" in a real grid environment.

- Remove all the internal safety control gains and delays.
- Reflect important non-linear dynamics based on physics principles (for rapid control validation).
- Establish our "virtual PHIL Heat Pump" in a real grid environment.

- Remove all the internal safety control gains and delays.
- Reflect important non-linear dynamics based on physics principles (for rapid control validation).
- Establish our "virtual PHIL Heat Pump" in a real grid environment.

How does PHIL look for a heating grid???

Components and functions

- Passive balancing unit:
 - Hydraulic decoupling
 - Energy balancing
- Booster heat pump transfer station:
 - Temperature boosting
 - Pumping power

Control philosophies under test:

- Controlling the flow rate going through the prosumer
- Controlling the Temperature Difference (ΔT) across the prosumer

Results of concept study:

- Total 20h of experiment; Heating and cooling demand
- Passive balancing unit simplifies prosumer integration
- Control strategy with fixed grid temperature achieves more stable control

- From centralized, unidirectional networks to decentralized, bidirectional networks
- Need for appropriate control methods:
 - Managing the complex heat exchange between prosumers and the grid

- From centralized, unidirectional networks to decentralized, bidirectional networks
- Need for appropriate control methods:
 - Managing the complex heat exchange between prosumers and the grid

- From centralized, unidirectional networks to decentralized, bidirectional networks
- Need for appropriate control methods:
 - Managing the complex heat exchange between prosumers and the grid

Power Setpoint & Power Actually Transmitted

High Priority Temperature Objective

How to use PHIL in Sector-coupling research?

Bidirectional Substation Control for Smart Thermal Grids: Experimental Evaluation of a Weighted Proportional-Integral Approach

Evaluate heat substation control for smart thermal grids

Choices are many!

References

- [1] D. Zinsmeister et al., "A prosumer-based sector-coupled district heating and cooling laboratory architecture," Smart Energy, vol. 9. Elsevier BV, p. 100095, Feb. 2023. doi: 10.1016/j.segy.2023.100095.
- [2] A. Mohapatra, T. Hamacher, and V. S. Peric, "PHIL Infrastructure in CoSES Microgrid Laboratory," 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE, pp. 1–6, Oct. 10, 2022. doi: 10.1109/isgt-europe54678.2022.9960295.
- [3] R. Song, A. Mohapatra, T. Hamacher, and V. S. Perić, "Power-hardware-in-the-loop validation of air-source heat pump for fast frequency response applications," Electric Power Systems Research, vol. 235. Elsevier BV, p. 110754, Oct. 2024. doi: 10.1016/j.epsr.2024.110754.
- [4] O. Angelidis et al., "Development and experimental validation of a hydraulic design and control philosophies for 5th generation district heating and cooling networks," Energy, vol. 308. Elsevier BV, p. 132835, Nov. 2024. doi: 10.1016/j.energy.2024.132835.
- [5] T. Licklederer, D. Zinsmeister, L. Lukas, F. Speer, T. Hamacher, and V. S. Perić, "Control of bidirectional prosumer substations in smart thermal grids: A weighted proportional-integral control approach," Applied Energy, vol. 354. Elsevier BV, p. 122239, Jan. 2024. doi: 10.1016/j.apenergy.2023.122239.
- [6] U. Ganslmeier, L. Lukas, T. Hamacher, and T. Licklederer, "Bidirectional Substation Control for Smart Thermal Grids: Experimental Evaluation of a Weighted Proportional-Integral Approach," 2024 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), IEEE, 2024