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Modeling a dynamical system for online control

How do we define a dynamical system?
— Linear Time Invariant systems to be precise

1. State space model
2. Transfer function
3. Neural network
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Non-parametric model definition

A system is described by its behaviour, which is the set of all

possible trajectories it can generate.

AND, a sufficiently exciting input signal allows us to completely

determine the system's behaviour from a finite number of input-

output data points.
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https://control.ee.ethz.ch/research/theory/data-enabled-predictive-control.html
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Continuing the work.

« Willem paper became standard literature in data-driven control

» Closed loop representations were developed.

« Stable state-feedback controller design was developed.
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Formulas for Data-Driven Control: Stabilization,
Optimality, and Robustness

Claudio De Persis ©“ and Pietro Tesi

/\

B. Data-Based Closed-Loop Representation

We now exploit Lemma 2 to derive a parametrization of
system (1a) in closed loop with a state-feedback law u = K.
We give here a proof of this result since the arguments we use
will often recur in the next sections.

Theorem 2: Let condition (6) hold. Then, system (la) in
closed loop with a state feedback u = Kz has the following
equivalent representation:

lﬁ(k I l} —X]__T(;K:t?(k.‘) (11)

where G'ir is a'T' x n matrix satisfying
K Uoar
= = G 12
|:In:| XO"I' K ( )

u(k) = Up,1 7Grca(k). (13)

In particular

A. State Feedback Design and Data-Based
Parametrization of All Stabilizing Controllers

By Theorem 2, the closed-loop system under state-feedback
# = K is such that

A+ BK = XI,TGK

where G i satisfies (12). One can, therefore, search for a matrix
G’k such that X 7G i satisfies the classic Lyapunov stability
condition. As the next result shows, it turns out that this problem
can be actually cast in terms of a simple LML

Theorem 3: Let condition (6) hold. Then any matrix () sat-
isfying

Xor@Q X TQ1|
o TRl =0 15
Q' X{y XorQ )
is such that
K =Up1,7Q(Xo Q)" (16)

stabilizes system (la). Conversely, if K is a stabilhizing state-
feedback gain for system (1a), then it can be written as in (16),
with ) solution of (15).

[2] C. De Persis, P. Tesi. "Formulas for Data-Driven Control: Stabilization, Optimality, and Robustness," in IEEE
Transactions on Automatic Control, vol. 65, no. 3, pp. 909-924, 2020.
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Genesis of data-driven predictive control

* Formulated as a counter to standard MPC

TUTI

Data-Enabled Predictive Control: In the Shallows of the DeePC

Jeremy Coulson John Lygeros Florian Dérfler

« Constrained optimization to calculate stabilizing feedback

* Ensures guaranteed behaviour
— Similar to H_inf
— Safety Filter literature

Anurag Mohapatra | EMT Colloquium | 11.12.2024

{bstract— We consider the problem of optimal trajectory
cking for unknown systems. A novel data-enabled predictive
itrol (DeePC) algorithm is presented that computes optimal

In the context of unknown black-box systems, the
no approach which solves the optimal trajectory tra
problem subiject to constraints and partial (output) obs

Feedback controller

x(t + 1) = Az(t) + Bu(t)
y(t) = Ca(t) + Duft),

Plant (only available as data)

determined by a
constrained
optimisation

A

A

minimize
g,u,y

subject to

N—1

> (llye = resnllfy + el
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[3] J. Coulson, J. Lygeros, F. Dorfler, "Data-Enabled Predictive Control: In the Shallows of the DeePC," in 2019 6

18th European Control Conference (ECC), 2019, pp. 307-312.
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Data-Enabled Predictive Control: In the Shallows of the DeePC

Jeremy Coulson

{bstract— We consider the problem of optimal trajectory
cking for unknown systems. A novel data-enabled predictive
itrol (DeePC) algorithm is presented that computes optimal

x(t + 1) = Az(t) + Bu(t)
y(t) = Ca(t) + Duft),

John Lygeros

Florian Dérfler

In the context of unknown black-box systems, the
no approach which solves the optimal trajectory tra
problem subiject to constraints and partial (output) obs

Feedback controller

« Constrained optimization to calculate stabilizing feedback
* Ensures guaranteed behaviour
— Similar to H_inf
— Safety Filter literature
« Extended to Non-linear systems, to handle noise and scalable optimisation

Regularized and Distributionally Robust Data-Enabled Predictive Control

Jeremy Coulson John Lygeros Florian Dérfler

Abstract—In this paper, we study a data-cnabled predictive ~ Hence, none of the approaches above are suitable for real-

[4] 3. Coulson, J. Lygeros, F. Dorfler, "Regularized and Distributionally Robust Data-
Enabled Predictive Control," in 2019 IEEE 58th Conference on Decision and Control
(CDC), 2019, pp. 26962701
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TLT
Application in power system?

« Grid agnostlc inverter control Data-Enabled Predictive Control for Grid-Connected Power Converters

Linbin Huang, Jeremy Coulson, John Lygeros and Florian Dorfler

« Computationally intensive

- Han kel IIIatrICeS are huge Abstract— We apply a novel data-enabled predictive con- loop, can become unstable when the power converter
trol (DeePC) algorithm in grid-connected power converters connected to a weak grid with high grid impedance
— 1 to perform safe and optimal control. Rather than a model, : T . N
CannOt Work on I Ine the DeePC algorithm solely needs input/output data measured equivalently, low short-circuit ratio) [6]-[S].

from the unknown system to predict future trajectories. We Even though offline design and analysns (based. on ano
show that the DeePC can eliminate undesired oscillations in  nal model) can be §0nfiuCthl to determine an ?pt}mal Cf?“

. [5] Huang, L., et al, "Data-Enabled Predictive Control for Grid-Connected Power Converters," in 2019 IEEE 58th
Anurag MOhapatra | EMT CoIquU|um | 11.12.2024 Conference on Decision and Control (CDC), 2019, pp. 8130-8135. 3
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Application in power system?

* Grid agnostic inverter control Data-Enabled Predictive Control for Grid-Connected Power Converters
. . . Linbin Huang, Jeremy Coulson, John Lygeros and Florian Dorfler
« Computationally intensive
- Han kel matrICGS are huge Abstract— We apply a novel data-enabled predictive con- loop, can become unstable when the power converter
. trol (DeePC) algorithm ?n grid-connected power converters  connected to a weak grid with high grid impedance
— Cannot work online i DechC algoritm srly neod inputoutput dat measared <LV low shor iruit o (61 (8]
from the unknown system to predict future trajectories. We Even though offline design and anal)fsm (based. on ano
show that the DeePC can eliminate undesired oscillations in  nal model) can be §0nfiuCthl to determine an ?pt}mal con
» Introduced Page Matrix instead of Hankel Matrix
— Better noise cancellation by SVD filtering
— But longer matrix Decentralized Data-Enabled Predictive Control for
Power System Oscillation Damping
Linbin Huang, Jeremy Coulson, John Lygeros, and Florian Dorfler
* Introduced decentral solution to optimisation
— Will scale better e e e el et e Sl i

voltage DC (HVDC) stations to perform safe and optimal wide- 141_[16]. In fact, the application of WAMS greatly facilitates

— Might work online??

[5] Huang, L., et al, "Data-Enabled Predictive Control for Grid-Connected Power Converters," in 2019 IEEE 58th
Conference on Decision and Control (CDC), 2019, pp. 8130-8135.

: [6] Huang, L., et al. "Decentralized Data-Enabled Predictive Control for Power System Oscillation Damping," in
Anurag Mohapatra l EMT CoIquU|um | 11.12.2024 IEEE Transactions on Control Systems Technology, vol. 30, no. 3, pp. 1065-1077, 2022. 9
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Controller biasing the identification?

In classical control theory, e 4 e Tt System output
. . . . ererence error C t Il S t :
- Observer design is time-scale separated from controller design > g Rkl g

Measured output

Sensor  je——

Similarly we must separate,

. . .. i - . . https://en.wikipedia.org/wiki/Control_loop#/media/File
« Estimating a predictive model from data and quantifying its uncertainty Feedback_loop_with_descriptions.svg
« Optimising the controller based on the estimated model and its uncertainty

Theorem 1 (Separation Principle) Let Li(uys) be Harnessing Uncertainty for a Separation Principle in
defined as in (21), the Final Control Error in (11) is Dizect Dits-Disven Predictive COIltI‘Ol*

given by

FCE(uy) = E[Lt(uf)|D) = J(us) + r(ug), (26a)

Error cost assuming perfect ] Alessandro Chiuso #, Marco Fabris #, Valentina Breschi , Simone Formentin ©
Wwhere
knOWIGdge Of SyStem dynam|CS _ *Department of Information Engineering, University of Padova, Via Gradenigo 6/b, 35131 Padova, Italy.
J(ug) = ||dw(us)|? ur — g%, 26b
( _,f':' H o [ _F;'l Q T | ' _F| R [ ] } Y Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

r(ug) := Tr [QVar[dw (us)|D]], (26¢c)

¢ Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.za L. Da Vinci, 32, 20133 Milano, Italy.
Error cost from uncertainty in
predictions

[7] Chiuso, A., et al, "Harnessing Uncertainty for a Separation Principle in Direct Data-Driven Predictive Control," 10

Anurag Mohapatra | EMT Colloquium | 11.12.2024 2023, arxiv preprint.
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In classical control theory, e 4 e Tt System output
. . . . ererence error C t Il S t :
- Observer design is time-scale separated from controller design > g Rkl g

Measured output

Sensor  je——

Similarly we must separate,

. . .. i - . . https://en.wikipedia.org/wiki/Control_loop#/media/File
« Estimating a predictive model from data and quantifying its uncertainty Feedback_loop_with_descriptions.svg
« Optimising the controller based on the estimated model and its uncertainty

Harnessing Uncertainty for a Separation Principle in

Direct Data-Driven Predictive Control *
In other words,

* Plant dynamics and controller dynamics can be separated.
« With only input-output data.

Alessandro Chiuso #, Marco Fabris ®, Valentina Breschi ”, Simone Formentin

*Department of Information Engineering, University of Padova, Via Gradenigo 6/b, 35131 Padova, Italy.
Y Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

¢ Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.za L. Da Vinci, 32, 20133 Milano, Italy.

[7] Chiuso, A., et al, "Harnessing Uncertainty for a Separation Principle in Direct Data-Driven Predictive Control," 1

Anurag Mohapatra | EMT Colloquium | 11.12.2024 2023, arxiv preprint.
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New ideas?

So far,

« ldentifying complete system with only data

» Closed for stabilizing controller design

* Robust to signal noise by regularisation

« Guaranteed behaviour through constrained optimisation

« Decentral solution of optimisation to scale

« Separation principle to remove controller biasing in data collection

« Contribution by Moffat et.al - Optimal predictor for finite amount of available data (manuscript under preparation)

« Better performance in low-data
— Better for real world.

* Low computation burden
— Might just run online!

Anurag Mohapatra | EMT Colloquium | 11.12.2024 12



New ideas?

So far,

ldentifying complete system with only data

Closed for stabilizing controller design

Robust to signal noise by regularisation

Guaranteed behaviour through constrained optimisation
Decentral solution of optimisation to scale

Separation principle to remove controller biasing in data collection

4\
Contribution by Moffat et.al - Optimal predictor for finite amount of available data owe' Sy
se’&\)\r‘o‘ P
Better performance in low-data e\ u,?
— Better for real world. \S m\‘\oa’{\oﬂsq '
Low computation burden 0

— Might just run online!
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Inverter control iIdeas

34 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 11, NOVEMBER 2012

Lets put on our power systems engineer hats! _ _ _
Control of Power Converters in AC Microgrids

Joan Rocabert, Member, IEEE, Alvaro Luna, Member, IEEE, Frede Blaabjerg, Fellow, IEEE,

° Semlnal Inverter Control paper. and Pedro Rodriguez, Senior Member, IEEE
. . . . . . (Invited Paper)
— How to design control loops for grid forming, grid following inverters '

. [8] Rocabert, J., et al. "Control of Power Converters in AC Microgrids," in IEEE Transactions on Power
Anurag Mohapatra | EMT Colloquium | 11.12.2024 Electronics, vol. 27, no. 11, pp. 4734-4749, 2012. 14
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Inverter control iIdeas

Lets put on our power systems engineer hats!

Control of Power Converters in AC Microgrids

Joan Rocabert, Member, IEEE, Alvaro Luna, Member, IEEE, Frede Blaabjerg, Fellow, IEEE,
and Pedro Rodriguez, Senior Member, IEEE

« Seminal inverter control paper.
. . . . . . (Invited Paper)
— How to design control loops for grid forming, grid following inverters '

« Concepts of emulating Synchronous machines can be added to inverters Virtual Synchronous Machine
Prof. Dr.-Ing. Hans-Peter Beck Dipl.-Ing. Ralf Hesse
Clausthal University of Technology Clausthal University of Technology

[nstitute of Electric Power Technology (IEE) Institute of Electric Power Technology (IEE
Cla_usthal:Zellerfeld, Germany Clausthal-Zellerfeld, Germany

H Owever! ! ! ! ! ! info@iee.tu-clausthal.de ralf hesse@tu-clausthal.de

* Require grid knowledge

° R/X ratio IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 4, APRIL 2011

Anurag Mohapatra | EMT Colloquium | 11.12.2024

Synchronverters: Inverters That Mimic
Synchronous Generators

Qing-Chang Zhong, Senior Member, IEEE, and George Weiss

[8] Rocabert, J., et al. "Control of Power Converters in AC Microgrids," in IEEE Transactions on Power
Electronics, vol. 27, no. 11, pp. 4734-4749, 2012.

[9] H. Beck, R. Hesse, "Virtual synchronous machine," in 2007 9th International Conference on Electrical Power
Quality and Utilisation, 2007, pp. 1-6.

[10] Q. Zhong, G. Weiss. "Synchronverters: Inverters That Mimic Synchronous Generators," in IEEE
Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259-1267, 2011.

)

34 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 11, NOVEMBER 2012
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Inverter control ideas — grid agnostic

— State estimation based control / Probing based control
— Perturb the system and estimate eigen modes
— Online and offline versions

TUTI

2462 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 3, MAY 2021

Roles of Dynamic State Estimation in Power System
Modeling, Monitoring and Operation

IEEE Task Force on Power System Dynamic State and Parameter Estimation
Junbo Zhao (TF Chair)“, Senior Member, IEEE, Marcos Netto ", Member, IEEE, Zhenyu Huang, Fellow, IEEE,
Samson Shenglong Yu®, Member, IEEE, Antonio Gémez-Exposito”, Fellow, IEEE,

Shaobu Wang *, Senior Member, IEEE, Innocent Kamwa ', Fellow, IEEE,

Shahrokh Akhlaghi ™, Senior Member, IEEE, Lamine Mili %, Life Fellow, IEEE, Vladimir Terzija", Fellow, IEEE,

Data-Driven Modeling of Grid-Forming Inverter
Dynamics Using Power Hardware-in-the-Loop
Experimentation

NISCHAL GURUWACHARYA 12, (Student Member, IEEE),

SOHAM CHAKRABORTY 3, (Member, IEEE), GOVIND SARASWAT 4, (Senior Member, IEEE),
RICHARD BRYCEZ, (Senior Member, IEEE), TIMOTHY M. HANSEN !, (Senior Member, IEEE),
AND REINALDO TONKOSKI 5, (Senior Member, IEEE)

Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, SD 57007, USA
?National Renewable Energy Laboratory, Golden, CO 80401, USA
3 Department of Electrical and Computer Enginecring, University of Minnesota, Minnesota., MN 55455, USA
“Enphase Energy, Austin, TX 78758, USA
*Department of Electric Power Transmission and Distribution, Technical University of Munich, 80333 Munich, Germany

[11] Zhao, J., et al. "Roles of Dynamic State Estimation in Power System Modeling, Monitoring and Operation,"
in IEEE Transactions on Power Systems, vol. 36, no. 3, pp. 2462—-2472, 2021.
. [12] Guruwacharya, N., et al. "Data-Driven Modeling of Grid-Forming Inverter Dynamics Using Power Hardware-
Anurag Mohapatra | EMT CoIquU|um | 11.12.2024 in-the-Loop Experimentation,” in IEEE Access, vol. 12, pp. 52267-52281, 2024. 16



Inverter control ideas — grid agnostic

« State estimation based control / Probing based control
— Perturb the system and estimate eigen modes
— Online and offline versions

« Sensitivity paramter based control
— Change in P, Q correlated to change in V,|
— Calculated from Load Flow Jacobian
— Mature literature on efficient computation and robustness

TUTI

Sensitivity in Power Systems

JOHN PESCHON, meEMBER, 1EEE, DEAN S. PIERCY, WILLIAM F. TINNEY, SENIOR MEMBER, IEEE,
AND ODD J. TVEIT, MEMBER, IEEE

Transactions on Power Systems, Vol. 7, No. 1, February 1992

CONTROL OF VOLTAGE STABILITY USING SENSITIVITY ANALYSIS

Miroslav M. Begovi¢, Member IEEE Arun G. Phadke, Fellow IEEE
School of Electrical Engineering Dept. of Electrical Enigineering
Georgia Institute of Technology Virginia Polytechnic Institute & State Univ.
Atlanta GA 50882—-0250 Blacksburg VA 24061-0111
IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 2, JUNE 2013 741

Efficient Computation of Sensitivity Coefficients
of Node Voltages and Line Currents in Unbalanced
Radial Electrical Distribution Networks

Konstantina Christakou, Member, IEEE, Jean-Yves LeBoudec, Fellow, IEEE, Mario Paolone, Senior Member, IEEE,
and Dan-Cristian Tomozei, Member, IEEE

[13] Peschon, J., et al. "Sensitivity in Power Systems," in IEEE Transactions on Power Apparatus and Systems,
vol. PAS-87, no. 8, pp. 1687-1696, 1968.

[14] M. Begovic, A. Phadke. "Control of voltage stability using sensitivity analysis," in IEEE Transactions on Power
Systems, vol. 7, no. 1, pp. 114-123, 1992.

[15] Christakou, K., et al. "Efficient Computation of Sensitivity Coefficients of Node Voltages and Line Currents in
Unbalanced Radial Electrical Distribution Networks," in IEEE Transactions on Smart Grid, vol. 4, no. 2; 2013.

Anurag Mohapatra | EMT Colloquium | 11.12.2024

[16] R. Gupta and M. Paolone, "Experimental Validation of Model-less Robust Voltage Control using Measurement-17
based Estimated Voltage Sensitivity Coefficients,"” 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 2023
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Inverter control ideas — grid agnostic

« State estimation based control / Probing based control

— Perturb the system and estimate eigen modes
— Online and offline versions

Sensitivity in Power Systems

JOHN PESCHON, meEMBER, 1EEE, DEAN S. PIERCY, WILLIAM F. TINNEY, SENIOR MEMBER, IEEE,
AND ODD J. TVEIT, MEMBER, IEEE

Transactions on Power Systems, Vol. 7, No. 1, February 1992

CONTROL OF VOLTAGE STABILITY USING SENSITIVITY ANALYSIS

Miroslav M. Begovi¢, Member IEEE Arun G. Phadke, Fellow IEEE
i e s Ly o
* Sensitivity paramter based control Kiinta GA 303380250 " Blachaburg VA 2hostosit1
— Change in P, Q correlated to change in V,|
_ Calculated from Load FIOW Jacoblan IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 2, JUNE 2013 741
— Mature literature on efficient computation and robustness Efficient Computation of Sensitivity Coefficients

The nodal voltage magnitude of z—th node at timeftk (i.e.,
|v;.+,|) can be approximated by

L tAq,K!,  YieN, (1)

To account for the uncertainty on the estimates, the coefficients
are represented by following intervals with AK?Y, ~AKY,
being the estimated uncertainty

K?, €[K?, —AKY, , KP, +AKY, | VieN, (2a)

1,65
K!, €[K!, —AK!, ,K!, +AK?, | VieN,. (2b)

2.t

|Ui7tk‘ - ‘U’i,tk—l |+Aptka,t

k k—

Anurag Mohapatra | EMT Colloquium | 11.12.2024

of Node Voltages and Line Currents in Unbalanced
Radial Electrical Distribution Networks

Konstantina Christakou, Member, IEEE, Jean-Yves LeBoudec, Fellow, IEEE, Mario Paolone, Senior Member, IEEE,
and Dan-Cristian Tomozei, Member, IEEE

[13] Peschon, J., et al. "Sensitivity in Power Systems," in IEEE Transactions on Power Apparatus and Systems,

vol. PAS-87, no. 8, pp. 1687-1696, 1968.

[14] M. Begovic, A. Phadke. "Control of voltage stability using sensitivity analysis," in IEEE Transactions on Power
Systems, vol. 7, no. 1, pp. 114-123, 1992.

[15] Christakou, K., et al. "Efficient Computation of Sensitivity Coefficients of Node Voltages and Line Currents in
Unbalanced Radial Electrical Distribution Networks," in IEEE Transactions on Smart Grid, vol. 4, no. 2; 2013.

[16] R. Gupta and M. Paolone, "Experimental Validation of Model-less Robust Voltage Control using Measurement-
based Estimated Voltage Sensitivity Coefficients,"” 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 2023 18



Inverter control ideas — grid agnostic

State estimation based control / Probing based control
— Perturb the system and estimate eigen modes
— Online and offline versions

Sensitivity paramter based control
— Change in P, Q correlated to change in V,|
— Calculated from Load Flow Jacobian

— Mature literature on efficient computation and robustness energies MBPY

Article

Machine learning models ?? Deep Reinforcement Learning-Based Voltage

. Control to Deal with Model Uncertainties in
— Mostly an alternative way to do #1 or #2 Distribution Networks

Jean-Frangois Toubeau'”, Bashir Bakhshideh Zad'”, Martin Hupez, Zacharie De Gréve and
Frangois Vallée *

The Holy Grail — Plug and play inverter with real time control!

Power Systems and Markets Research Group, University of Mons, 7000 Mons, Belgium;
Jean-Francois. TOUBEAU@umons.ac.be (J.-F.T.); Bashir BAKHSHIDEHZAD@umons.ac.be (B.B.Z.);
Martin HUPEZ@umons.ac.be (M.H.); Zacharie DEGREVE@umons.ac.be (Z.D.G.)

* Correspondence: Francois.VALLEE@umons.ac.be

. [17] Toubeau, J. et.al , “Deep Reinforcement Learning-Based Voltage Control to Deal with Model Uncertainties
Anurag Mohapatra | EMT Colloquium | 11.12.2024 in Distribution Networks”. Energies 2020, 13, 3928.
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Lets combine the two worlds

TUTI

Inverter control world need controllers which are: Data driven control theory gives us a controller that has,

* Model free and yet mathematically rigorous .
« Acceptable for Online/Real-time computation .
« Can adapt to different control policies .
* Robust with low setup requirement .

Anurag Mohapatra | EMT Colloquium | 11.12.2024

Closed form non-parametric (model free) represenation of system
Guaranteed behaviour, can handle noise, can scale

Separates controller dynamics from plant dynamics

Low computation burden and needs less measurement

Will solve as an online policy

20



TUTI

Lets combine the two worlds

Inverter control world need controllers which are: Data driven control theory gives us a controller that has,

* Model free and yet mathematically rigorous * Closed form non-parametric (model free) represenation of system
« Acceptable for Online/Real-time computation « Guaranteed behaviour, can handle noise, can scale

« Can adapt to different control policies « Separates controller dynamics from plant dynamics

* Robust with low setup requirement * Low computation burden and needs less measurement

« Will solve as an online policy

‘—‘ (IGBTs) 1 R2 ('GBTS)[—W
oc /N [} % /TN DG
source 1 ) Ziine , > = \ /Sour 2
v, iz o

[ Legend |
Controller
Switching System
Skonels Data Collection
Measurements

Test setup at ETH Zirich

1. Controller deployed on STM
Microcontoller

2. Inverter emulated by Imperix system
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Tests In CoSES

Egston b,

Grid connected mode and controlling a 25kW Grid following inverter Converter iz, [abg”|. id, clDDPCS
Grid ’ «—— | A ) dq algorithm
()
—|:|— . T
» Inverter current control loop @5kHz, RT “sokua D
» Predictive controller feeding into inverter @100Hz M Legend

Power Control

——>3-Phase Inputs

Rectifier

) . ~ ———>| Power Outputs
Toolchain ; ap Z

NI VeriStand RT engine. 20/0.4 k¥
Simulink for Inverter current controller and PLL
Controller

MATLAB for offline training
Compiled C routine for online optimisation
Python script to interface with CoSES

- Reference — P, Q.
« Feedback — P ey, Qeq
* Output — Iy ers g set reference for inverter

Data pipeline
— 500 data points for training @50Hz - One-time Offline tuning - Deployed Live
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Early results

Egston P
~ Converter Tape . iy, ¢DDPC
1.4 Grid Q'Jb 1 d " lgorthm. Qe
20/ 0.4 kV Zwa S ©
12+ ‘J‘ ' ' 250 kVA l Logond
1+ I|‘ \ | H ’ = Fectiior ” Power Control
| —>13-Ph |
A Y O PO \M,,,ﬂ,..,.w .\m 2 I b ”~ N ,. | R .
Ul f PRI v el :
Sl \ ‘ EITN
S ’ Controller
e | | J * Reference — Py, Qqet
) I * Feedback — P, Qreal
0.2 * Output — Iy ¢t lgset reference for inverter
-0.4 —
0.6 \ \ \ \ !

3.808827988 3.80882799 3.808827992 3.808827994 3.808827996

+ Decent tracking
» Severe overshoots

« Cost function should be updated
» Dropouts

* C-solver has bugs
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Early results

1.4
12 ‘J‘ ” '
1k || '
TR Ny
‘I \H.l L,M,,, |"‘ N \ m “ m “ S o
0.8 ‘ ‘l|‘ W M v » .w\ﬂn’\ i .WMM’\\H “W \W '»
g- 0.6 — ‘ ‘ | ‘
D ' 1|
o2l | | ’
of u J
0.2
-0.4 —
06 3.8088‘27988 3.808‘82799 3.8088‘27992 3.8088‘2799 : \
+ Decent tracking ; \i
* Severe overshoots 0 " .
» Cost function should be updated -
« Dropouts =
« C-solver has bugs
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TUTI

Egston P
-
~ Converter g, . i cbbPC|_
o ) i [ algonthm<QL
A1 o
20/ 0.4 kV T ;
250kvA  ZLine lj
= 3 ; Power Control
Rectifier —>{3-Phase "nPUtS
e,b 1 Power Outputs
3 /
20/ 0.4 kV
250 kVA
Controller

+ Reference — Py, Qqq
° FeEdbaCk - Preal! Qreal
* Output — Iy ot |qset r€fErENce for inverter

« Dropouts fixed by anomaly
detection
« If error, take previous value
« Overshoot remains an issue
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Removing overshoot

How to remove overshoot without Integral control?
« Penalise the rate of change of input.

In other words,

* For the same final control action, steady rise is cheaper than
oscillations.
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Removing overshoot

0.85

1.4 0s - "
|
12—
\ 0.75 ‘
1 ‘ |
| 0.7
08 - A oss | ‘
i X
3
0.6 — a
£ 06
a a
£ 041 0.55
o
v2|- _ |
|
)r.,, -
ol— ‘|| 0.45 |
/ |
0.2 ‘. 04 J ‘
2 4 6 8 10 12 14 16
Timeins

How to remove overshoot without Integral control?
« Penalise the rate of change of input.

* Qvershoot all but eliminated.

« Steady state error can be improved
In other words,

* For the same final control action, steady rise is cheaper than
oscillations.
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Evolution of results
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* Anomaly detection is acting like
a Low pass filter.

* Must change solver!!
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Evolution of results

0.8 T
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* Anomaly detection is acting like
a Low pass filter.

* Must change solver!!
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 Switched to MOSEK and CVXPY

« Stable behaviour without anomaly

filter

* A bit more overshoot

« Get more data
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Evolution of results
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* Anomaly detection is acting like « Switched to MOSEK and CVXPY * Increased data from 500 to 5000
a Low pass filter. points
« Stable behaviour without anomaly
* Must change solver!! filter » Adjusted the cost weights

* A bit more overshoot

« Get more data
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* Near zero tracking error
* No overshoot
* Bestrise time
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Final results

Step response of the system with Pr: 0 — 0.8 p.u; Qr: 0.1 p.u.

10

Step response of the system with P i 04— 08p.u;Q K 0.1 p.u. Step response of the system with P K 0—08pu;Q X 0.1 — 0.4 p.u. 1 i : : i : : : :
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7Y Eear -t NN I L A S 7Y Rear ot N IR W 0.8
0.7 - 0.7 - 4 orr 7
L 06- L 06- 45081 1
3 3 a
a a
£ £ £ 0.5+ -
» 0.5 » 0.5 L
[0} (] S
= = =
o 0.4 p.u. o 0.4 p.u >
=04 P =04 - Sl P I A R § 0.4 y
03 4 03FfF 4 03f g
0.2 q 0.2 4 02 7
0.1 p.u
0.1+ BT N s P P e 0.1 = —p ——————————————————————————— 01+
0 L I 1 | I 1 1 I | 0 Op.u " A L 1 I -l 0 Opu._ - = " ) 1 | -l
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9
Timeins Timeins Timeins
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Learnings during experiment

The grid is linear — this is a valid assumption!
— Training at one loading and controlling at another loading is possible

Grid drifts in hours or days.
— Must repeat training periodically.
— Good thing it takes less than 30s and can be done online.

Increasing excitation power of training signal has bigger impact than increasing data collection window.

Safety filters like anomaly detection causes slow response.

A variety of control functions can be served by the predictive controller
— Integral-like part to remove overshoot

Inverter can be operated in Grid following or Grid forming mode.
— Trialed a Virtual synchronous machine as well
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Conclusion

It works!

You can control,

« agrid following or grid forming inverter,

« to achieve zero steady state error and no overshoot,

» with zero knowledge of the grid,

» using only 500 training points,

* in a mathematically verifiable data-driven model,

« while rejecting controller bias,

* being robust to noise, and

* being computationally tractable for online operation, with

« guaranteed system behaviour.
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